ANALYSIS OF RESPONSES CBT CLASS IX MATHS OCT 2023

Average- 4.39 / 10 points Median- 4 / 10 points Range- 0 -10 points

Total points distribution-

Scores	0	1	2	3	4	5	6	7	8	9	10
No. of	75	390	785	920	791	616	485	363	347	250	112
Students											

Frequently missed questions- (less than 50% students responded correctly)

Q.1- In triangle ABC, if AB=BC and $\angle B = 70^\circ$, $\angle A$ will be:

<u>Correct responses-</u>55°

2099 / 5134 (40.9%)

Explanation-

AB=BC, $\angle C = \angle A = x$ { Angle opposite to equal sides of a triangle are equal}

∠A+∠B+∠C=180°

x+70°+x=180°

2x=180°-70°=110°

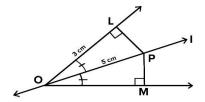
X=55°

∠A=55°

Q.2- It is given that \triangle ABC $\cong \triangle$ FDE and AB = 5 cm, \angle B = 40° and \angle A = 80°. Then which of the following is true?

<u>Correct responses</u> -DF = 5 cm, ∠E = 60°

2436 / 5134(44.4%)

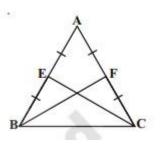

Explanation-

if two or more triangles are congruent, then their corresponding angles and sides are congruent as well.

Q.3- In two triangles, ABC and PQR, $\angle A = 30^{\circ}$, $\angle B = 70^{\circ}$, $\angle P = 70^{\circ}$, $\angle Q = 80^{\circ}$ and AB = RP, then <u>Correct responses</u> $\triangle ABC \cong \triangle RPQ$ 1970 / 5134 (38.37%) Explanation-The correct option is $D \triangle ABC \cong \triangle PRQ$ In $\triangle ABC, \angle A = 30^{\circ}, \angle B = 70^{\circ}$ $\angle C = 180^{\circ} - (\angle A + \angle B)$ [Angle sum property of triangle] $\angle C = 180^{\circ} - (\angle A + \angle B)$ [Angle sum property of triangle] $\angle C = 80^{\circ}$ In $\triangle PQR, \angle P = 70^{\circ}, \angle Q = 80^{\circ}$ So, $\angle R = 180^{\circ} - (\angle P + \angle Q)$ [Angle sum property of triangle] $\angle R = 180^{\circ} - (70^{\circ} + 80^{\circ})$ $\angle R = 30^{\circ}$

In the $\triangle ABC$ and $\triangle PQR$, we have $\angle C = \angle Q$

∠A=∠P AB=PR [Given] ∴∆ABC≅∆PRQ [By AAS congruence] Q.4- In the given figure, find PM <u>Correct responses-</u> 4 CM 1855 / 5134 (36.13%) Explanation-



Q.6- E and F are respectively the mid points of equal sides AB and AC of triangle ABC .which of the following statement is true?

Correct responses- BF=CE 2243 / 5134 (43.7%)

Explanation-Given E and F are mid point of equal sides AB and AC of triangle ABC

In $\triangle ABF$ and $\triangle ACE$

AB=AC (given)

 $\angle A = \angle A$ (common angle)

AF=AE (halves of equal sides)

 $\therefore \Delta ABF \cong \Delta ACE$ (SAS rule)

 \therefore BF=CF (CPCT)

Q.7- If ABC and DBC are two isosceles triangles on the same base BC. Then: Correct responses $-\angle$ ABD = \angle ACD 2497 / 5134 (48.63%)

Explanation-If ABC and DBC are two isosceles triangles on the same base BC, then \triangle ABD \cong \triangle ACD by SSS congruence and \angle ABD = \angle ACD.

Q.8- In triangles ABC and PQR, AB = AC, $\angle C = \angle P$ and $\angle B = \angle Q$. The two triangles are

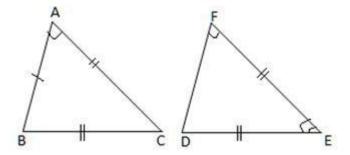
Correct responses- Isosceles but not congruent 2098 / 5134 (40.86%)

Explanation-In \triangle ABC,

AB = AC (given)

 $\Rightarrow \angle C = \angle B$ [angles opposite to equal sides are equal]

So, $\triangle ABC$ is an isosceles triangle.


But it is given that $\angle B = \angle Q$

∠C = ∠P

∠P = ∠Q

QR = PR [Sides opposite to equal angles are equal]

So, $\triangle PQR$ is also an isosceles triangle.

Therefore, both triangles are isosceles but not congruent. As, we know that AAA is not a criterion for congruence of triangles.

Q.9- In figure, if AB=AC, then the value of $\angle C$ is equal to:

Correct responses- 72º 1606 / 5134 (31.3%)

Explanation-

Given that, In
$$\triangle ABC$$

 $AB = AL$ and
 $LA = n$ and $LB = 2n$
We know that angle opposite to equal sides of a
triangle are equal. Then
 $AB = AC$
 $LB = LC$
 $LB = LC$
 $LB = LC$
 $LB = LC = 2n$ (D)
According to Angle sum property of a triangle,
 $xA + LB + LC = 180^{\circ}$
 $n + (B + LC = 180^{\circ})$
 $2 + 2n + 2n = 180^{\circ}$
 $n = 36^{\circ}$
then $LC = 2n = 2x 36^{\circ} = 72^{\circ}$
 $LC = 72^{\circ}$

Q.10- In the given figure, triangles PQC and PRC are such that QC = PR and PQ = CR. Then \angle PCQ =?

Correct responses- ∠CPR 1984 / 5134 (38.6%)

Explanation-

Here, we have

QC = PR [GIVEN]

PQ = CR [GIVEN]

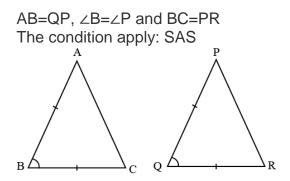
PC = PC [COMMON]

By SAS similarly criterion,

 $\Delta PQC \cong \Delta PRC.$

Therefore by C.P.C.T,

∠PCQ = ∠CPR


Hence, $\angle PCQ = \angle CPR$.

Other responses-

Q.5- In Triangle ABC and Triangle PQR, three equality relation between same parts are as follows: AB=QP, \angle B= \angle P and BC=PR State which of the congruence condition applies— <u>Correct responses</u>- SAS 3,773 / 5,134 (73.5%)

Explanation-

In $\triangle ABC$ and $\triangle PQR$,

